

高性价比组合导航 GI320 使用手册

产品介绍

采用松耦合组合导航技术,将 IMU 与 RTK 解算、观测量预处理深度融合,能够提供实时高精度的位置、速度和姿态等导航参数。

组合导航算法在 GPS 数据获取后将其作为初始数据进行运算,如果有 GPS 数据丢失状况发生,系统将单独运行捷联惯导解算(无里程计),经解算后的数据被送入 Kalman 滤波器中处理,并结合车辆运动学原理进行修正,可有效的抑制位置、速度误差的快速发散,在一定时间内依然保持良好的定位精度,使得一公里定位误差保持在 1%以内。

主要特性

- ·GNSS/INS 高精度车规级组合导航
- ·高性价比 GNSS/INS 组合导航
- •支持原始数据输出与后处理
- •车辆运动学

- •高精度定位定向
- ·全系统全频点 RTK 解算
- ·支持精密单点定位 PPP
- •特殊抑制发散算法

技术参数

性能参数

卫星信号	BDS	B1I/B2I/B3I
	GPS	L1C/A/L2P(Y)/L2C/L5
	Galileo	E1/E5a/E5b
	GLONASS	G1/G2
	QZSS	L1/L2/L5
单点定位	平面	1.5m
	高程	2.5m
DGPS	平面	0.4m
	高程	0.8m
RTK	平面	0.8cm+1ppm
	高程	1.5cm+1ppm

首次定位时间	冷启动	<30s
	温启动	<15s
最大数据率	GNSS 原始观测量	20HZ
	GNSS RTK 定位	20HZ
	INS 组合导航解算	500HZ
	IMU 原始数据率	500HZ
	定位信息输出	250HZ

定向精度	1m 基线		0.1°		
	2m 基线	2m 基线 0.0		0.075°	
授时精度(RMS)	20ns				
测速精度(RMS)	0.03m/s				
速度极限(RMS)	300m/s				
观测精度(RMS)	BDS GPS		GLONASS	Galileo	
B1I/B1C/L1C/A/E1/G1 伪距	10cm	10cm	10cm	10cm	
B1I/B1C/L1 C/A/E1/G1 载波相位	1mm	1mm	1mm	1mm	
B2I/G2/L2P(Y)/L2C/E5b 伪距	10cm	10cm	10cm	10cm	
B2I/B2a/ B2b/L5/E5a/E5b 载波相位	1mm	1mm	1mm	1mm	
B3I/L5/E5a/B2a 伪距	10cm	10cm	10cm	10cm	
B3I/L5/E5a/B2a 载波相位	1mm	1mm	1mm	1mm	

内部 IMU 参数

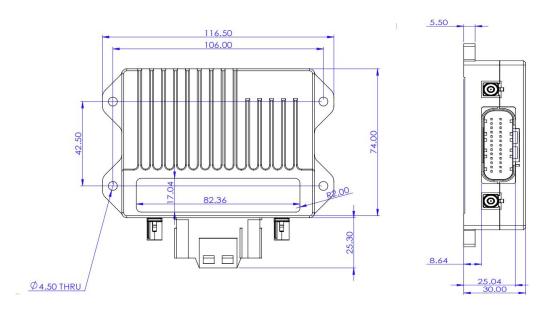
陀螺量程	±400°/s	陀螺零偏稳定性	6°/h(10s 平滑)
			0.5°/h(allan 方差)
加计量程	±3.6g(默认±1.2g)	加计零偏稳定性	50ug (10s 平滑)
输出频率	500HZ		

通信接口

接口类型

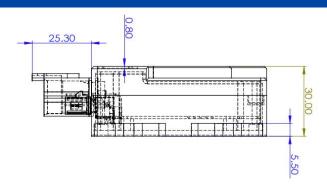
ANT1	SMA 外螺内针	GNSS 主天线接口
ANT2	SMA 外螺内针	GNSS 副天线接口
汽车连接器	MX23A26	汽车连接器

波特率	8000000/ 460800 / 230400 / 115200 / 19200 / 9600 / 2400
数据位	8
默认配置	115200 8 1 无校验
串口可选 422 (485) /232	


产品清单

类型	名称	型 号	数量
出厂标配	高性价比组合导航	GI320	1
选配	天线	BT-300 天线+大底座螺柱+SMA 馈线 (5 米)	2
选配	4GDTU 模块	MD-649	1
选配	汽车连接器插头	MX23A26SF1	1

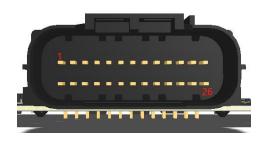
设备安装


设备尺寸

净重 200g

*

基础硬件连接示意图



引脚定义

1	POWER_IN	电源正极 (9-36) V	14	PPS_3.3V	时钟同步脉冲(3.3V)
2	GND	电源负极	15	VSS	数字地
3	KEY	接电源正 设备工作	16	INT	事件中断输入
		接电源负 设备停止			
4	CANH2	CAN2 信号脚	17	EVENT	事件中断输出
5	CANL2	CAN2 信号脚	18	VSS	数字地
6	VSS	数字地	19	232RXD	232 通信引脚
7	CANH1	CAN1 信号脚	20	232TXD	232 通信引脚

8	CANL1	CAN1 信 号 脚	21	VSS	数字地
9	vss	数字地	22	485_A/422_T+	485/422 通信引脚
10	ETH_RX+	以太网引脚	23	485_B/422_T-	485/422 通信引脚
11	ETH_RX-	以太网引脚	24	422_R+	422 通信引脚
12	ETH_TX+	以太网引脚	25	422_R-	422 通信引脚
13	ETH_TX-	以太网引脚	26	VSS	数字地

使用时注意线束标号会出现与实际不符的情况,请以上图标识连接线缆

GI320S 使用的 GNSS 天线需要为有源天线。GI320 提供 5VDC 的天线馈电,最大支持 200mA 电流。推荐或要求的参数如下:

1. 需支持的频点:

GNSS	频点	GNSS	频点
BDS	B1I/B2I/B3I	Galileo	E1/E5a/E5b
GPS	L1/L2/L5	QZSS	L1/L2/L5
GLONASS	G1/G2	-	L-band

2. 推荐增益: 40dB;

3. 推荐噪声系数: NF<1.5;

4. 馈电: 2.8~5V;

5. 相位中心误差: ±2mm。

射频同轴电缆规格

主天线射频同轴电缆需与天线和接收机的阻抗匹配,特征阻抗为 50Ω,建议线衰减小于 10dB。射频同轴电缆连接器一端适配 GNSS 天线,另一端为 FAKRA-C 适配 GI320 主天线接口。

10dB。 射频同轴电缆连接器一端适配 GNSS 天线, 另一端为 FAKRA-D 适配 GI320 从天线接口。

从天线射频同轴电缆需与天线和接收机的阻抗匹配,特征阻抗为 50Ω,建议线衰减小于

温度及防护等级

GI320 对温度要求如下:

- 1. 工作温度 -40℃~85℃
- 2. 存储温度-40℃~85℃

防护等级: IP54

供电电源规格

GI320 对电源规格要求如下:

- 1. 电压范围+9V~+24VDC
- 2. 至少 10W 的稳定输出功率

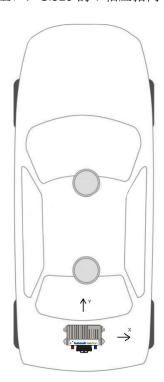
安装 GNSS 天线

GI320 目前有双天线以及单天线两种版本可供选择。

安装 GNSS 天线时有以下注意事项:

- 1. GNSS 天线位置的上方开阔无遮挡
- 2. GNSS 天线与载体为刚性连接,确保天线在载体移动时不会发生晃动
- 3. 双天线下建议天线距离大于1米,相距越远越好

GNSS 双天线模式下推荐双天线的基线垂直于载体前进方向,如下图所示:



安装 GI320 整机

为提高精度,在安装时应在水平方向使 IMU 尽量靠近 GNSS 主天线,安装时必须保证 GI320 与载体为刚性连接,确保 GI320 与天线在载体上的相对位置固定不变。且要保证 GI320 安装的稳固可靠,在载体行进过程中不会发生移动或晃动。

为简化系统配置,推荐将组合导航系统 Gl320 安装于靠近载体后轮轴的位置,姿态保持水平(即 Z 轴应垂直于地面指向上), Gl320 的 Y 轴应指向载体前进方向(如下图所示)。

通信连接

GI320 可以使用串口与外部通信设备进通信,目前指令以及 RTK 数据只能通过 232 口进行发送。

串口

组合导航系统 GI320 提供了两个串口,如下图所示:

串口号	RS-232	RS-485	RS-422
COM1	支持	不支持	不支持
COM2	不支持	支持	支持

电源连接

连接器中一号引脚 POWER_IN 与三号引脚 KEY 电源使能脚连接至电源正极,二号引脚 GND 连接至电源负极。

检查 GI320 状态

在安装好 GI320 后,接通电源,发送命令 UNLOG,需要注意的是使用串口助手进行指令发送时需要勾选发送新行确认 GI320 是否正常运行,如是,则 GI320 将回复如下内容:

\$Command response: OK.

设备使用

在使用前确保 GI320 已经按照上一部分所述安装,并且已经上电工作。

串口通信

GI320 可以通过串口与电脑等设备通信。在二者建立通信之前,GI320 和电脑都需要对串口参数进行合理配置。GI320 的默认串口配置为:

- 1. 115200bps
- 2. 无校验位
- 3. 8bit 数据位
- 4. 1bit 停止位
- 5. 无校验位

仅 COM1 支持使用指令 CONFIG 进行端口配置。

修改 COM1 串口配置例子如下:

指令头	串口设备	串口参数 参数描述		
CONFIC	COM1	\rh#+ \s\s		
CONFIG	СОМ2	波特率	设置串口的波特率	
指令		描述		
config com	1 115200	设置 com1 波特率为 115200		
		可以分别对 com1,com2,com3 设置为 2400,9600,19200,115200,		
		230400,460800,8000000 中任意一个波特率		

命令格式为:

CONFIG [串口设备号] [串口属性参数]

简化 ASCII 语法:

GNGGA GNSS 多系统联合定位数据

本指令用于设置当前串口或者指定串口输出多系统联合定位的结果,输出信息包含 GNSS 接收机的时间和定位相关数据。语句以 GNGGA 开头。根据参与定位的卫星系统可能 为 GPGGA、BDGGA、GLGGA、GAGGA。当只有 GPS 卫星系统参与定位解算时,以 GPGGA 形式输出;当只有 BDS 卫星系统参与定位解算时,以 BDGGA 形式输出;当只有 GLONASS 卫星系统参与定位解算时,以 GLGGA 形式输出;当只有 Galileo 卫星系统参与定位解算时,

以 GAGGA 形式输出。有两个卫星系统及以上的卫星参与定位解算都以 GNGGA 形式输出。

简化 ASCII 格式:

GNGGA 1 当前串口输出 1Hz 的 GNGGA 信息

GNGGA COM2 1 在 com2 输出 1Hz 的 GNGGA 信息

消息输出:

\$GNGGA,025754.00,4004.74102107,N,11614.19532779,E,1,18,0.7,63.3224,M,-

9.7848,M,00,0000*58

GNGGA 数据结构

	ID	字段	数据描述	符号	示例
--	----	----	------	----	----

1	\$GNGGA	Log 头		\$GNGGA
2	utc	位置对应的UTC时间,	hhmmss.ss	173568.00
		hh/mm/ss.ss		
3	lat	纬度 (DDmm.mm)	IIII.II	3251.2654
4	Lat dir	纬度方向 (N = 北, S =南)	a	N
5	lon	经度 (DDDmm.mm)	ууууу.уу	12033.3592
6	lon dir	经度方向 (E = 东, W = 西)	a	E
7	qual	GPS 质量指示符	х	1
		0 = 定位不可用或无效		
		1 = 单点定位		
		2 = 伪距差分或 SBAS 定位		
		4 = RTK 固定解		
		5 =RTK 浮点解		
		6 = 惯导定位		
		7 = 用户设定位置 (Fixed		
		Position)		
8	# sats	使用中的卫星数。可能与所见数	xx	10
		不一致		
9	hdop	水平精度因子	x.x	1.0
10	alt	天线海拔高度,低于大地水准面	x.x	1021.45
		为负值。		
11	a-units	天线高度单位 (M = m)	М	М
12	undulatio	大地水准面差距-大地水准面和	x.x	-17.183
	n	WGS84 椭球面之间的距离。大		
		地水准面高于椭球面为正值,否		
		则,为负值。		
13	u-units	大地水准面差距单位 (M = m)	М	М
14	age	差分数据龄期,秒为单位	xx	(没有差分数据时为 00)
15	stn ID	差分基站 ID, 0000-4096	xxxx	(没有差分数据时为 00)

16	*xx	校验和	*hh	*3F
17	[CR][LF]	语句结束符		[CR][LF]

IMU 原始数据信息

该语句包含 IMU 状态指示和加速度计和陀螺仪相对于 IMU 外壳坐标系的测量值。

命令格式:

RAWIMUA COM1 1

RAWIMU 数据格式

ID	字段	数据描述
1	\$RAWIMUA	Log 头
2	Week	GNSS 周
3	Seconds Into Week	周秒
4	Z Accel Output	速度沿 Z 轴变化。
5	Y Accel Output	速度沿 Y 轴变化。
6	X Accel Output	速度沿X轴变化。
7	Z Gyro Output	沿 Z 轴右手螺旋的角度变化量。
8	Y Gyro Output	沿 Y 轴右手螺旋的角度变化量。
9	X Gyro Output	沿 X 轴右手螺旋的角度变化量。
10	*xx	校验和
11	[CR][LF]	语句结束符

INSPVA 组合导航位置、速度及姿态信息

设置输出组合导航定位的结果, ASCII 语句以"#INSPVA"开头

推荐输入:

INSPVAA com2 1

INSPVA 数据结构

ID	字段	数据描述
1	\$INSPVA	Log 头
2	Week	GNSS 周
3	Seconds	周秒
4	Latitude	纬度(WGS84) [degrees]

5	Longitude	经度(WGS84) [degrees]			
6	Height	椭球高(WGS84) [m]			
7	East Velocity	东向速度(负值为南向) [m/s]			
8	North Velocity	北向速度(负值为西向) [m/s]			
9	Up Velocity	天向速度[m/s]			
10	Roll	横滚角 (沿 Y 轴右手螺旋) [度]			
11	Pitch	俯仰角 (沿 X 轴右手螺旋) [度]			
12	Azimuth	航向角,从北向逆时针方向(绕 Z 轴右手螺旋),这是由 IMU 陀螺经组合滤			
		波器计算出的惯性方位角			
13	Status	INS 状态			
14	xxxx	32-bit CRC			
15	[CR][LF]	语句结束符(仅 ASCII)			

INSPVB 组合导航位置、速度及姿态信息

设置输出组合导航定位的结果,二进制语句以"#INSPVB"开头

推荐输入:

INSPVAB com2 1

INSPVB 数据结构

ID	字段		数据描述	类型	字节数	字节偏
						移
1		同步段	0x57	char	1	0
2		帧信息	0x00	char	1	1
3	长度段		0x5B	char	1	2
4	地址段		0x00	char	1	3
5	命令段		0x03	char	1	4
6	数据段	Week	GNSS 周	Ulong	4	8
		Seconds	周秒	Double	8	16
	Latitude		纬度(WGS84) [degrees]	Double	8	24
		Longitude	经度(WGS84) [degrees]	Double	8	32
		Height	椭球高(WGS84) [m]	Double	8	40

		East Velocity	东向速度(负值为南向) [m/s]	Double	8	48
	North Velocity		北向速度(负值为西向) [m/s]	Double	8	56
		Up Velocity	天向速度[m/s]	Double	8	64
	Roll Pitch Azimuth		横滚角 (沿 Y 轴右手螺旋) [度]	Double	8	72
			俯仰角 (沿 X 轴右手螺旋) [度]	Double	8	80
			航向角,从北向逆时针方向 (绕 Z	Double	8	88
			 轴右手螺旋),这是由 IMU 陀螺			
			经组合滤波器计算出的惯性方位角			
		Status	INS 状态	Enum	1	89
7		xxxx	32-bit CRC	Hex	4	93

其它指令

Unlog 停止串口输出

本指令用于 停止串口输出特定的数据信息。可配置参数[语句]停止输出对应的数据信息;可配置参数[端口],停止端口输出。若无指定端口,一般默认为当前接收该指令的端口;如果 没有指定消息名称,将停止所有信息输出。

命令格式为:

UNLOG [port] [message]

简化 ASCII 语法

UNLOG 对当前串口停止输出所有的信息

UNLOG GNGGA 对当前串口停止输出 GNGGA 语句

UNLOG COM1 停止 com1 所有的信息输出

UNLOG COM2 GNGGA 停止 com2 输出的 GNGGA 语句

Unlog 指令参数如下

指令头	端口号	描述
UNLOG	СОМ1	将停止输出的信息名称
	COM2	

Saveconfig 保存用户配置

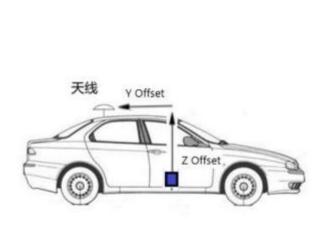
本指令将当前的用户配置保存。

命令格式为:

SAVECONFIG

简化 ASCII 语法:

SAVECONFIG


Saveconfig 指令参数如下

指令头	指令参数	描述
SAVECONFIG		保存用户配置

IMU 至主天线杆臂参数配置

使用此命令输入 IMU 和 GNSS 主天线相位中心之间的偏移量,即惯导至主天线杆臂参数。测量杆臂参数时应尽可能精确,特别是 RTK 模式下,误差最好在 1 厘米。杆臂参数中的任何误差将直接转换成惯性导航系统位置的误差。X、Y 和 Z 代表 IMU 到主天线相位中心的矢量。

为提高精度,在安装时应在水平方向使 IMU 尽量靠近 GNSS 主天线。IMU 位置在 GI320 的 左上角。

IMU 到天线相位中心的偏移量

命令格式:

CONFIG LEVER ARM x y z

简化 ASCII 语法:

CONFIG LEVER ARM 0.05 -1.05 0.03

IMU 至主天线杆臂参数配置

指令头	参数	参数描述
CONFIG	Х	X 方向偏移量,单位:米,范围-100~100,保留两位小数
LEVER	Υ	Y 方向偏移量,单位:米,范围-100~100,保留两位小数
ARM	Z	Z 方向偏移量,单位:米,范围-100~100,保留两位小数

附录 2: 二进制协议格式

同步段	帧信息	长度段	地址段	命令段	数据段	结尾段
1 Byte	1 Byte	1/2/4 Byte	1/2/4 Byte	1/2/4 Byte	0∼n Byte	4 Byte

数据帧说明

名称	长度	说明
同步段	1 Byte	固定为 0x57,用于数据帧同步
帧信息	1 Byte	表示数据帧的信息 Bit 7 帧信息校验,当帧信息 Bit 6~Bit 0 中的 1 的个数为偶数时此位为 0,当 1 的个数为奇数时此位为 1 Bit 6 保留,恒为 0 Bit 5:4 长度段的数据长度
长度段	1/2/4 Byte	从地址段(包含)到结尾段(包含)的字节数,高字节在前,字节数由帧信息的 Bit 5:4 决定
地址段	1/2/4 Byte	数据帧的目标传感器地址,高字节在前,字节数由帧信息的 Bit 3:2 决定 仅当此地址等于传感器地址或等于 0 时,传感器才会响应
命令段	1/2/4 Byte	数据帧的命令信息,高字节在前,字节数由帧信息的 Bit 3:2 决定 决定数据帧的作用,最低位为 0 表示发送到传感器,最低位为 1 表示从传感 器返回
数据段	0∼n Byte	和命令段对应的数据信息,一般为传感器读数或配置参数
结尾段	4 Byte	数据帧的校验信息,从帧信息(包含)到数据段(包含)的 CRC 校验值,高字节在前 CRC 信息如下: 宽度: 32 位 多项式: 04C11DB7 初始值: FFFFFFFF 结果异或: 000000000 输入反转: 否

组合导航 GI320

无锡北微传感科技有限公司

地址:无锡市滨湖区绣溪路 58 号 30 幢

总机: 0510-85737158

热线: 400-618-0510

邮箱: sales@bwsensing.com

网址: www.bwsensing.com.cn